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1.0 INTRODUCTICN AND LITERATURE SURVEY

1.1 Introductory Comments

The streamwise evolution of 2-D unsteady fluctuations in_a
parallel-flow boundary layer is formulated 1in this analysis. The

normal velocity fluctuation and derivatives are specified along the
y-axis, and the behavior in the boundary layer downstream of the
y-axis is obtained. Permissible disturbances include the Tollmien
wave and other eigenwaves, but alsc include veortical and irrotaticnal
fluctuations in the freestream. The analysis links the boundary
conditions with the amplitudes and phases of the various waves.

This boundary-value problem uses the asymptotic solution of the
Orr-Sommerfeld equation by Tsuge (Ref, 1) which is summarized here in
Appendix A. With  this asymptotic theory, the Tollmien wave was
calculated by Tsuge and Sakai (Ref. 2). .

This report describes the details of Ref. 3 and is similar to the
AIAA paper (Ref., 4).

For brevity, the list of initial-value problems in time (Section
1.2) and the 1list of boundary-value problems in space (Section 1.3)
are restricted to problems that

(a) analytically decompose initial or boundary conditions into
the &solutions of the Orr-Sommerfeld {or Rayleigh) equations, or
thosge equations with a uniform mean Llow

{b} include freestream disturbances (i.es. attention is not
restricted to the evoluticon of the discrete eigenmodes, except
for channel flows where an infinite set of discrete eigenmodes
is mathematically complete}

The Fourier-Laplace solutions of the Orr-Sommerfeld equation have been
documented in other papers and reports. A summary of the known 2-D
and 3-D solutions appears in Refs, 5b and 5c.

Besides the studies summarized in Sections 1.2 and 1.3, other
approaches have been used to study unsteady shear layers, including

(1) Superpositions of eigenmodes with their amplitudes specified.
References using this approach include Criminale (Ref. 6, Chpt., V},
Gaster (Ref. 7), and Mack and EKendall {Ref. 8).

{2) Inviscid analyses of free-shear lavers with gstep-function mean
relocity profiles, e.g. Bechert (Refs. 9 and 10)

(3) Analytical solutions of the unsteady Prandtl boundary laver
equations or higher-order boundary layer theory, as surveyed by
Teleonis {Ref. 11}

{4} Lagrangian descriptions of turbulence convected past blunt bodies,
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as described by the sudden distortion theories, e.g. Hunt (Ref. 12)

(5) Numerical soclutions for shear layers using (a) the linearized,
elliptic momentum equations with a specified mean f£low, (b} the

parabolized Navier-Stokes equations, (c) the Navier-Stokes equations,
{d) Lagrangian tracking of vortex £filaments, and (e} equations
overning the evoluticn of the correlations with truncations or models
or the higher correlations. Examples of these approaches are cited
in Ref. 5¢

(6) Compressible boundary-value or initial-value analyses with
freestream disturbances by Tam {Refs, 13~15), Shapiro (Ref, 31}, and
Thomas and Lekoudis (Ref. 17)

(7) Deterministic experiments with vortical freestream disturbance by
Dovgal, Kozlov, and Levchenko (Ref., 18) and Rockwell (Ref. 19).

1.2 List of Initial-Value Problems in Time for Parallel Flows

(1.2a) An array of wvortices bisected by a plate for a general
orientation of the vortices, including viscaosity (Ref. 20; Ref. 21 is
closely related mathematically)

(1.2b) 3-D obligue plane waves of vorticity bisected by a plate,
including viscosity (Ref. 22)

(l1.2c) Free-ghear layer with uniform mean vorticity excited by
vortical fluctuations inside and outside the shear layer; rescnant
and nonresonant excitation (Ref. 23). This study was documented in
"The temporal response of a free-shear layer to vortical disturbances”
(1978), an unpublished paper available from the author.

(1.2d) 3-D vorticity in a boundary layer represented by a layer of
uniform mean vorticity; inviscid analysis by P. Durbin "Distortion
of turbulence by a constant-shear layer adjacent to a wall," private
communication (1977).

{l1.2e} 2-D fluctuations in a boundary layer with two layers of uniform
mean vorticity in unstable and stable configurations, inviscid
analysis (Refs. 24 and 25)

(1.2£) Boundary layer with smooth velocity profiles, 2-D fluctuations,
including viscosity (Ref. 26)

(1.2g9) Nonlinear temporal evolution of longitudinal vortices in a
parallel-flow boundary layer, inviscid (Ref. 20)

1.3 List of Boundary-Value Problems in Space for Parallel and
Heon-Farallel Flows

(1.3a) Downstream viscous 2-D half-plane problem with arrays of
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vortices (Refs. 27 and 28)

{l1.3b} Inviscid, uniform mean flow, 2~D fluctuations in a
quarter-plane with a plate {Ref. 29)

{1.3c) Eight full-plane problems with a semi-infinite plate (with a
leading edge), uniform mean flow (Refs. 30-33). These solutions are
represented as a traveling wave and a superpositiocn of standing waves
in Ref. 34

{1.3d) Full-plane problem with a finite-length plate, inviscid, 2-D
fluctuations (Ref. 30)

{1,3e) Inviscid problem with a mean beoundary layer having twa layers
of constant mean wvorticity (Ref. 35}. This analysis shows the
eigenmodes excited by vortical freestream disturbances.

(1.3f) Viscous, downstream quarter-plane problem with a  smooth
velocity profile, 2-D fluctuations {Refs. 3,4,36)

(1.3g) Viscous, downstream quarter-plane problem with a 2-D stationary
wavy wall, 2-D fluctuations, smooth mean velocity profile (Ref. 37)

(1.3h) Flow past a semi-infinite, stationary wavy wall (Ref. 38)

(1.3i) Flow past a semi-infinite plate with traveling sinusoidally
surface waves that travel at speeds different than the freestream
speed, and galloping surface waves that travel at the freestream speed

{Ref. 39)
(1.3j) Boundary-value problem fer a channel (Ref. 40)

{(1.3k} 3-D fluctuations in a viscous boundary-value problem with a
smooth, parallel-flow boundary layer (Ref. 41¥h

{1.31) Coupling between an oscillating freestream and a
Tollmien-Schlichting wave in a nonparallel boundary layer (Ref. 42)

Other analyses have been carried out that 1link the initial
conditions with amplitudes of the instabilities. These studies
include nonresonant and resonant excitation of buoyancy instabilities
(Refs. 43-45) and the temporal evolution of 3-D disturbances in an

Ekman boundary layer (Ref. 46).

In the next secticn, the partial differential egquation describing
the ewvolution of disturbances will be derived and integral transformed
to yield a forced Orr-Sommerfeld equation. In Section 3, an
asymptotic solution of this forced equation is found. The inverse
Laplace transform is obtained in Section 4. The formulation is
summarized and discussed in Section 3. The method of successive
approximation for solving the Orr-Scmmerfeld eguation is summarized in
the appendix.
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2.0 DERIVATION OF THE FORCED 3-D ORR~SOMMERFELD EQUATICN

2.1 Introductory Comments

The three momentum equations for a constant property flow are
(1) written with velocities angd pressure separated into mean ang
fluctuation components and (2) averaged to obtain equations for the
mean quantities. The averaged equations are subtracted from those of
part (1) above to yield equations for the disturbances, and the
disturbance equations are linearized for small-amplitude fluctuations.
A parallel-flow, U =TU(y) and V = W = 0, is assumed. Derivatives of
these momentum equations and the continuity equation are combined so
that the pressure and two of the three velocities are eliminated. The
resultant equation governing the evelution of 3-D fluctuations in a
parallel flow is

3.z i-evafvzané} v . o
iat* @) 5« T (2.1)
where € = 1/R is the inverse of the Reynolds number.

This equation allows us to formulate a boundary-value problem in
terms of solutions of the homogeneous Orr-Sommerfeld equation. This

equation results when you seek solutions of form
XX+ PR = gl
Vix,o 2 ¢)= Py, c,v)e” (2.2}

where ¢Ay) is a complex function, o and ¥ are the wavenumbers in the x
and z-directions, and &« is the frequency. When (2.2) is introduced
into {2.1), then the 3-D Orr-Sommerfeld equation results

= e 2 2.2y 5 _ € Z 2 ,2\% _
{("‘:)(‘9“"" ¥4y 2=t g0 (2.3)

where D = d/dy is the ordinary derivative.

Fourier-Laplace transforms of (2.1) yield not equation {2.3) but
the forced version derived in Section 2.3. This procedure shows how
to superimpose the solutions. Inversely, it shows how to decompose
the initial disturbances into the waves,

Equations for primitive variables {such as velocities,
vorticities, and pressure) are sometimes more useful than eguations
for the less intuitive variable &. For example, equation (2,1) has a
fourth derivative in x. Thus, four independent solutions are expected
in the freestream as Ref. 27 indicated.

¢ Also, the equation analogous to (2.1) for the 2-D vorticity
= Vx- uy .

3"_+C7.el—6172} +v—.—.O
’r  8X Py (2.4)
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indicates that the vorticity convects (ﬁ'r.+UEt'], diffuses (EF’zﬁ'), and
is produced (VF } in _the shear laver. For inviscid flows with
irrotational mean flows (¥ = 0) or flows with uniform mean vorticity
(f = 0), the disturbance vorticity convects with the mean flow. For
these flows, the vorticity is found by (analytically or numericaily)
tracking the vorticity as it convects downstream, followed by solving
Poisson's equation for the disturbance streamfunction. By this
method, solutions have been found which describe effects of leading
and trailing edges, lateral edges, trailing vortex sheets, and other
phenomena with practically important physics and mathematics.
Although links are possible and desirable between these works and the
Orr-Sommerfeld equaticn, direct study of the Crr-Sommerfeld equation
has not provided the best insights into these new problems.

2.2 Domains for Boundary-Value Problems

Figure 2.1 shows the quarter-plane reqion (x > G, ¥ > 0) studied
here, Sufficient conditions on the velocity fluctuation are specified
along the y-axis, and along the plate coinciding with the x-axis, so
that solutions can be c¢btained in that quadrant.

The domains for other boundary-value problems are alsc sketched
in that figure.

2.3 Integral Transforms of the Partial Differential Equation

The coefficients U and U, in equation {2.1) are independent of
X, %, and t. Thus, integral transforms in those directions reduce the
partial differential equation to an ordinary differential equation,
We focus on problems with "steady-state oscillations™ where our wind
tunnel has been turned on for a long time and the conditions along the
y-axis oscillate in time (bet not necessarily sinuscidally). The
transient response arising from the start-up procedure has wvanished
from the region of interest.

For this case, equation (2.1) is Fourier transformed in time.
Because the z-domain eztends from -@< z <@, a Pourier transform in =z
is taken. In Chapter 3, we study a 2-D flow. The complex Fourier
transform in time and the z-direction is

[- -]

2 - TE+ Wl .

V(X4 ¥, @) = gg V(x4 & ¢€)e gz ot {2.5)
-

The signs in the exponential have been chosen so the resultant

transform 1is consistent with the classical Crr-Sommerfeld eguation.

An alternate transform is the generalized Feurier transform

@ 2 , 2
2 ; cerE- B 4wt - L,
buir (ngmor B E

By either transform, equation (2.1) reduces to
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upstream
guarter-plane

upstream
half~-plane

e ——————————
upstream
half-strip

Domain
for the
present
problem

e —— 4
downstream
quarter-plane

downstream
half-plane

y

'downstream
half-gstrip

half-strip in
y-direction

upper half—plan;f

full-strip in full-plane
y-direction

)

rectangle full-strip

in x-direction

Figure 2.1 Some domains for 2-D boundary-value problens

10
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A A A A
L 53 _eURlG20 - o 3V
where the Laplacian reduces to
A 2 z z
- S - R
véis 52 592 ¥ (2.8)

Because we are interested in the downstream quadrant in Figure 2.1, a
cne-gided Laplace transform in the x-~direction is taken
- ~]
X - 8x
Py, s, v,w)= \ vix,¢; % @)e X (2.9)
o

where s is the complex Laplace parameter. With this transformation,
the following equation results

o _ 2 71y )
(- stx- gy g (st Yo TE

When s = iyis introduced, where of is the complex x-wavenumber, then
the bracketed term on the left-hand side is the classical
Oorr-Scmmerfeld operator in equation (2.3). The right-hand side is the
forcing function

#) = (5Nt S)” inzz*sa- *) - Gy
s

M.’ o)
'G(B + sty '2‘ z 332"’)(3 *'S)} (2.11)
where v?s the normal velocity (or its derivatives) along the y-axis.
For a 2-D flow with ¥ = 0, the forcing function is

0L {52, w3 5) 7 :yw) g, - (a;sag;z ECPEIE 4
(2.12)

A. (o)

To introduce definiteness in our analyses, the forcing function is
Fourier transformed and represented as

= =" ‘/“5-9'._,. ~ e
#ly)= Sp)e ~lpe (2.13)

Thus, the forced Orr-Sommerfeld equation for a 2-D flow studied in the

next chapter is B9 f?
2 #re Pl e FY
- )0 s%)- & —f o%s® )@=
{ (F- 5% )-5y=5 € } S (2.14)

where the Laplace parameter and the x-wavenumber are related by s=i.

11
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3.0 SOLUTION OF THE TWO-DIMENSIONAL FORCED ORR-SCMMERFELD EQUATION

3.1 Particular Integral and Its Asymptotic Form

The objective now is to obtain the particular solution of the
forced Orr-Scmmerfeld equation
- z oz - / z ,2y% =
- o -y == (O -t = =
{(U C)( <) L Ty ( ) }.?’ o (3.1)
where the forcing function is prescribed at x =0 as the Fourier
component

- By - -cBy
gm0 = p@)eﬂ $Filple F (3.2)

The particular solution is obtained by the method of undetermined
coefficients. For the Orr-Sommerfeld equaticn, the scluticn was given

by Gustavsson (Ref, 26) as

- £ {21050 0, 4 [0,y + 2§45 )
{3.3)
where W is the Wronskian

¢ ¢ % %

P r ” -

w- |9 % 4 4

2" 4 4 =«
" 4 &4 &7 (3.4)

o~
and A’-'l_,' for § = 1,2,3,4 is the cofactor of C’:, with the sign reversed.
q. for j =1,2,3,4 are four independent solukions of the Orr—Sommerfeld

eguation.

Because the Orr-Sommerfeld eguation 1lacks the next-to-highest
derivative ({the third derivative}, then the Wrecnskian is constant.
This means that the Wronskian only needs to be evaluated at one point,

Y=y|.

The wall conditions and the asymptotic selutions for large y are
listed in Table 1. The four solutions are derived in Appendix A,
These asymptotic solutions are based on a new scaling, and are for
flows where 0 £ ¥y <(® or —o< y <o,

Substituting the asymptotic expressions for the ¢’s, then the
Wronskian is

172
W= Zawr R (or- w)z where & = [ofz+f'f?(d—w}] / {3.5)

12
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Table 1,
Characteristics of the four independent,
asymptotic solutions of the Orr-Sommerfeld equation

Solution Value at y=0 Asymptotic form for y>>§

& 0 (1-c] ‘sinh®(y-3)
Z 0 {1-c}coshel{y-v}
N 1 s% exp[~#{y~y) ]
% 0 & exp [44ly-) |

where & = [« +iR(« ~)] and %= #(4)

with the real part of & chosen as positive. Also, the wall value of
the particular solution (equation 3.3) must satisfy the impermeability
condition, 4?,(0} = 0, by choosing the lower bound of the integral as
follows

L4 4 @ 4
Z = ;’i(@”jdﬂ"/y-ﬂ-g Sdzﬁ'ag, «d Sdsﬁay*ﬁ 84‘:{9-)
g P > 4 (3.6)

The asymptotic particular solution is obtained with the solutions
in Table 1. The result is

. b g @G =y-Ph, 8l (PR ST
(""".2,,:."2'?:7-7){2?@?‘)[‘" b9 (P gL F B ]

' + B rp(y"ff‘) d(y—;)_"_ _"“t1; _P(y"j‘:—l -d@—j)
e CARCTAAO TN CAC I

L z(;‘e"f?ﬁU e F-")}
ad (3.7)

This solution is used later when an outer boundary condition is
satisfied. Note that equation (3.7) includes terms which gqrow
expenentially like exp{«y). These terms are cancelled later so that
the complete solutjon is well behaved. Equation (3.7) does not
include terms like expi«y).

3.2 Complementary Solution and the Assembly of the General Solution

_ The general solution of the forced Orr-Sommerfeld equation (3.1)
15
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=z
=% Zf:' % (3.8)
J=
subject to the boundary conditions
# =0 {impermeability) (3.9)
, atk y =0
# =0 (no-slip) (3.10)
and ¢ is bounded as y >, (3.11)

Because four of the five solutions satisfy impermeability
G (0)= &(0)= g (o) = #(e)=0
then for the general solution (3.8) to satisfy impermeability, then
the coefficient of the fifth term which does not satisfy
impermeability must vanish

Also, because only ¢% grows like explxy) as y %2, then the
boundedness condition {3.11) requires that coefficient tc vanish also

=0 (3.13)

The remaining constants, C,and C;, are determined by the no-slip
{equation 3.10) and boundedness (equation 3.11) conditions

’ - d
C}’;(a)d- (‘ztﬂzfa)-‘- f-'-?,(c?)=0 (3.14}
and &g 5y
. Iy y - -
C} +C(/"C)+ ¢ ["‘Jelﬂ,‘_ ~e fgy]=a
P z x(l-aw) " X~ x+ @ {(3.15)

Equation {3.15) reflects the idea that the coefficient of expey)
vanishes in the asymptotic region., Note that ¢does not vanish as

Y *a, but oscillates as exp (tj.Fy} .
These two equations for the two constants are solveg to give
§0) o st P £ )]
Cn’a?[—zﬂdﬁ-(g(O)( ol e * o+

-~

nt'—rF =+ fF

’ P - r'; - "{3_5"
G = £[22O . iqlo(SE . 2 )]
BEGRC (3.16)

14
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o

o o
ra I
where @,(O)ﬁ ﬁ;f(o_‘} S .d‘, Fagy + %(G) iﬁz F"?"" ﬁ(’a)g d-il“-{? (3.17)
g

on

(3.18}

Note that 4 = 0 is identical with the eigenvalue condition for the
discrete modes, as seen from

s s Ls

F=GC& + G&H =0 er g=0

and g - Y
& = c:’ .°_(' - C:?. a = 7 a:_y — 20
o~

= (3.19)
The impermeapility conditicn is automatically satisfied by & and g .
A more precise look at the behavior of  reveals that must be

rescaled in the non-asymptotic regioh. The behavicr in the
non~asymptotic region and the asymptotic (outer) region are

qf=°€{y[5\;+dzsl+d+54+"']"'0@2)} Aom ﬁ/“;

7~ 5"’/'7"5""(5/'".;) Lo y>>j

= C

where B;is a constant depending only on ¢ =@ /bl; it ig not affected
by rescaling. Thus & must be rescaled so that ‘

G (3.20)

for the non-asymptotic expression for &,

The determirant 4 of equation (3,19) has multiple zercs
corresponding to the eigenvalues of the discrete modes. The
Tollmien-Schlichting mode is the lowest or fundamental mode. Then
1/Ais expanded as the partial fractions

V)
Zu n(-@t‘l{N) /
A

with %, = T (3.21)
” (aa/au)d___q,lwy

15
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Using & as rescaled by equation (3.20), then

«gCo)  #(o)
34 - 2 z
3 o o (t—cv)
3g0)  3g’ 270) o)
A Y Py, +
ot of (d“w)z s Z(‘*"W}

Because 4= 0 at « =e<',m}, then his

—|
,
29e)sa 39 0)sx| | Ty & (o)
A = |4 + ol
v » (- a)® ; Zfa-a)
)
of = of,
(3,22}
3.3 Summary of the solutions in {v:;s«) Space
The final expression for the Ggeneral solution of the
Orr-Sommerfeld equation is
‘ f e~
_ A, o §C0) ., @0 Fef_’ ]#
7=(% ';a-_-},“‘“){[—z',a—ﬁ 2 w o, TP )
’ Fy P
«2g () +(°(¢7(0) £’e + Z e )J?’
* [Z/H?(d—a)) o — (fa o+
zuR (w-a)*
{3.23)
The new % as rescaled in equation (3.20) is used. Because ¢ is linear
in &, it is rescaled by the same factor

(3.24)
Far from the wall (y>>y), an asymptotic general solution results when
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the asymptotic expression (3.7) is substituted into eguation (3.23).
The result is

_-((y—,s;)(z B ) [““ /_ @'(o)

of — q,(N) [+ (o( «@)

f/ A e” ,3_9 $ (o)
+((af )@ (O)]( (‘9 + QH_F (;{w)z/z/a?}

¢ | %\ f" [ = [3-?( (FG’ 9’) -d(ff‘jf))*ﬁé‘ﬁ-q]

#= €

+2e< (et-c0) of'+t'F
; [,r 3 !6 _F;(e—r' {y_qu e—ﬂf(y"f))];zﬁz}

Y- cd o —
F {3.25)

17
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4,0 INVERSE LAPLACE TRANSFORM

4.1 Geperal Expression for the Contributions from Eoles and Branch

In Chapter 3, the general solution of the forced Orr-Sommerfeld
equation in transform space was obtained. To express the fluctuation
velocity as a function of x and y, the inverse Laplace transform is
necessary
A
27

" SX
= \ Fe oS

ol (4.1)

where /consists of the contours s = 5.+ iA and a semi-circle of
infinite radius in the domain of Real(s) < 0. The real value s is
chosen so that the poles of Pare located on the left side of the 1line
Bo+ 1A ,with =-®<A{®, Figure 4.1 shows this contour, the poles, and
the branch lines.

The contribution from the jth-pole, s = sj, is calculated from
the Cauchy theorem
Igp. SX
7= [ @(s-5:)]
i T is= s (4.2)

If ¢is not single-valued in the s-plane, as caused by fractional
powers of s, then a Riemann cut is required. Because the integration
contour /~ cannot pass through the Riemann cut, it must detour along the
branch cuts, ¥ , or along another path which does not cross those
cuts. This rule gives us the following expression

A 7 Sx ¢y
-+ _ e Fors =
v ZZ:.Zsz S ZE:JT

J b.’.l

The contributions from the poles and branch line is obtained in the
following sections.

(4.3)

4.2 Interior Solution
4.2.1 Poles from the Discrete Eigenmodes

Eqn. (3.23) for the interjor solution shows that there are, N+2
poles corresponding to s =in§” nd s =*8if the forcing functicn Fis a
pole-free analytic function. The equation also shows, for # to have a
positive real part, that branch lines are required because of the
fractional power in egn. (3.5). Because F* is open to free choice,
poles or branch lines can be generated or eliminated by it.

The poles 5 = r#f“%f eqn, (3.23) are for the discrete eigenmodes,
According to the Cauchy theorem (4,2), we have

18
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wave (unstable
case shown)

Higher discrete.
modes

Decaying vortical -

_ exterior solution
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Y pole in the standing wave
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5==g . Pole in the——a
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Vortical fluctuations
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in the streamwise direction

Figure 4.1 The contour taken in the inverse transform, showing the branch lines and poles.
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L) L A S,
) o X x$(@) . . LLFY Y
TR AT~ -t S e

> §(0) et F+€'F;+ Fe P A0,
+[m)z+ “ 0)( c-(--"F a’+f/6 )]1

N
]

o = of

(4.4)

Each mode satisfies the impermeability and no-slip conditions
independent of each other mode and independent of other contributions.
These ceonditions are

Ce.’,'mzw =0 and (35(%y%=a =0 (4.5}

The first condition is easily checked, & (0) =#{0) = 0. The second
condition is fulfilled because of the eigenvalue condition

«@ro)  #(o)
a = .
2 -
. (=) (4.6)

. _ (N
which vanishes for o =of,

4.2.2 Poles from the Standing Wave Modes

The contribution from the pole g = “f=s5.(or ot = ip) is also
obtained in a straightforward manner. The result is

. e —BX _+ ¢ ; . s . ”
Zsn (1w ) e W gt graiag]
(4.7)

This mode is a standing wave which decays as exp(-8x). It satisfies
impermeability and no-siip. This mode was studied by Rogler and
Reshotko in the freestream (Ref. 27) and appeared in  another
boundary-value problem in a quarter-plane {Ref. 29). Solutions of the
Orr-Sommerfeld equation for boundary layers were calculated by Rogler
and Tsuge (Ref., 5a) and Rogler {Refs, 5b-c) for this decaying wave and
the corresponding growing wave, This growing wave is discussed next.

The contribution from the exponentially growing standing wave,

20
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s =f {or o = -igldcan be calculated in the same manner. Bowever, this
mode is suppres in this quarter-plane problem where x -*»a2., To
exclude thie mede, the forcing function must have the form

_ ) A
s = (ﬁ{+rr3) < (4.8)

where m is an integer. Physically realizable situations exist where
this growing mode is acceptable, such as the upstream influence of a
trailing edge or another downstream boundary condition. The
possibility of modeling such effects in a a problem with 0<x<®is not

considered here. This growing mode can appear in boundary-value
problems where the x-domain is finite with 0&x<L, or semi-infinite

with -@<x<{0, as Figure 2.1 shows.

4,2,3 Contributions from the Branch Line XYielding a Contipuous
Spectrum

Ag has been defined in egn. (3.5), the function
t/2

is not single-valued in the s-plane. A branch cut is required which
makes 4 unigue and maps the whole s-plane onto

Aeoc(#) 2 O (4.10)

The contribution from this branch line 1is an integral over the
continuous (vortical) mode. Condition (4.10) requires the branch cut
to be a special curve. To simplify the task ahead, we let

o= [(s-s)( 5;" SJ]J/Z

iz (4.11)
r’- A o (/fz—-n'#(:ﬂﬂ"e)[

where Sg = = o= - ci (4.12a)
cR it f:'_z

37 57 < (4.12b)

and define = 3S-— 53 s {4.13)

Then = [c(s3- 53—0‘)]/ (4.18)

Now consider a curve along which Real {u}=0 (4.15}

Bleng that curve arg o+ af_y(ss'— s;-a)=%7 (4.16)

I
The two vectors 6 and s, — 5 =& and their arguments & and & are shown
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in Figure 4.2. The locus of the curve is obtained from the following
relationship by taking the tangent of (4.16)

I
5, (55-%).-
6 (53"‘ 53),-." T
-6 (Ss~5;);  zawo;
(Sg-Sa)- 2% ol

= O

or

(4.17)

This branch line forms part of a hyperbola, labeled ¥ in Figure 4,1,
along where £¢is purely imaginary.
Y2 +zrV¢+ sP 1"2(5 +T)r/z
+ 7 [(S,.Z)+ ] r

A= S.+27

o=

|

’
Sf‘ = (53—55)" o 2

’
> (53-'53)._—' ==

(4.18)

Alongl its upper side, Imag(4&) > 0 and along its lower side,
Imag(#) < 0. The whole s-plane is mapped onto a half plane

Real{4&) > 0 by this branch cut. The contribution from the branch cut
is

/ sX
-‘?5—'(’().5’)': — %E P s

e
x .
o ¢S5,
_ 2V dr(s.r2r) exp {[Sa' 7(1- 5.+ )1 } %
T VA (s )R (5 272 ST 7T
(4.19)
evaluated at of =~ (s +:'7'(|—f_._.s" )r and where g_is
3 Sa+T @a{ 3 é
’év o é’(’o) ﬂ(z ° ¢ -+ —_—
G (9)= (%:‘T-?—‘-T;NJ) - zZR ? Y (oc-c0)® ] 2 & (ot-c)?
{4.20)
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Figure 4.2 Geometry and notation for the branch lines associated with the
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Contribution, I3, satisfies the impermeability and no~slip conditions

% (0)=0 (“#(o)= g (o)= Fra)= o)

(% ( «B0) o P Flg@)) Pl
.?5) (Z ol — _‘,(.‘v C?(’-O) ff(d—w)z 2,?(;,_“9:

A s ’
&5'(0) L[ _:’(N)(_.,( (%-0) @ (o)~ *g (’o))_]

Zﬁ(«—zd) /v
$0) 4, .,
i} 2R (or-ar)? [ 4 !

z -2
For large Reynolds numbers, the terms (%:/q,i'“ O(R } are ignored.
The expression simplifies to

5 [+ =] (‘j-r.
1}@9’ =T Ty |/z (r+ s J'/z oy
< r o!:-(5‘+r?‘/ o
S+7‘
(4.21)

The main part of the x-dependence of Ig comes from the term exp(syx) .
Thus, the contribution from the branch llne is approxlmately
—-(QVE‘
¢ ~ exefe (4.22)

where s5is given in egn, (4.12). This approximate solution propagates
with the freestream velocity and decays slowly in the x-direction.
For x >> 1, the x-dependence of the integral shows a universal
feature. The contribution from the integrand is limited to a region
close to 7~ 0, Transforming the variable from 7 te t such that

- 'E%' |f2
we have
S o
e St e J
’ffz g 3d=—r.5
z'[x(r— el

L]
= - g (e gﬁa%’/‘(s,-*rs;-)’/x 2 (4.23)

which shows the enhancement of the spatial decay by the factor x"/{

73

T
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4.3 Exterior (Asymptotic) Selution
4.3.1 Poles from the Discrete Eigenmodes

The procedure used in Secticon 4.2.1 also applies to the
asymptotic solution fFvalld for y »> ¥ as g:.ven in egn. (3.25)

. (A
n o Mg G ) i LY
Z )= e 7 ( % i[ifj—;}%w)
i . £ fY e = @(o)
+E(=-r -‘-‘ﬂ)"ff(/o)}( d_r/'g * o("*r/'ﬁ) (“" e2?) ‘2/“'6. d-—-ﬁ(,(N)
{4.24)

N}
This expression shows that this mode decays as exp(-+«,y) toward the

freestream as it should.

4.3.2 Poles from the Standing Waves

The asymptotic solution for the pole at s = -p is

Z(%,9) = ¢ { ‘Pl ”(Z q,,cm)’:e .

e
[.—E‘ % (0)+(ip- w)¢(O)J Zf’({g‘d)) (4.25)

Because Iphas the form exp(—px+1py), far from the boundary layer edge,

this mode is oscillatory in y and is irrotational. This agrees with
REfS- sa'—c-

A similar expressign can be obtained for the pole at s =§,
correspondlng to the € " mode. If condition (4.8) applies, then this

mode is suppressed in the asymptotic and general solutions.
4.3.3 Branch Line Yielding i Continuous Spectrum

The contribution from the branch line for the asymptotic solution
is obtained from eqn. {4.19) with the function gsreplaced by

(495 _% x §co)
(4, = < (Z u-.” N) _
3oy o Rt ( “”)'gﬂVA?
evaluated at o= —c3zF (?‘('” s P ) (4.26)

Because Sy & itzf-a’«-‘z/'R from eqn. (4.,12), this mode varies with y as
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exel-«(4-9)] = ew[(?@)(——f— - @ 0(?‘))]

where 7 is the variable introduced in eqn. {4.18).

(4.27)

4.3.4 & Pole Representing a Solution Periodic in ¥ and Slowly Decaying

The asymptotic expression (3.25) reveals a pole at

//‘+/52*-* o (4.28)

which has no counterpart in the interior solution. It is located on
the hyperbola branch line, and is the mode forced by the periodicity
at the initial line, x = 0, and continues to ¥ o with wavenumber 15.

Ban. (4.28) is rewritten as

//'za-ffa = — 5% &5 - e B+
=-(s-s)(s-5.) =0

. 2, 2 -2
S, = t‘a)—w_’;,&-ﬂdff P,

5, = R-cwe (@) (4.29)
The contribution from the pole s = Sy is
Z = == *”
z (54-fw)(54" "’;’) {4.30)

From eqn. (4.29), the asymptotic behavior is 2
2
—rer T . . @ +E
e (XK= )* 1By — X
e 7, ~ explet "% ] (4.31)

This solution is periodic in y, travels downstream with the freestream
velocity, and slowly decays exponentially,

The same procedure for the pole at s = s, leads to a solution
which grows 1like exp(g/x). Although this mode can be physically
realized as the upstream influence of a disturbance, it is excluded in
this quarter-plane problem by factorizing the forcing function as

/7
F= (-5 ¢ (4.32)

where n is an integer.
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4,3.5 The caseg «/= 0 and o = &/

The exterior gsolution (3.25) has factors o and of -&in the
denominator, and thus have pole-11ke characteristics. The first one,
however, is ruled out because it gwes & solution which approaches a
nonvanishing constant r.

- -
(ﬁ) = [.;- + e Fy ] # O
¥~ Zaa‘s

This reflects the fact that F should have a factor of
A= {4.33)
in realistic sitvations, as inferred from the form of egn. [(3.1).

The other case of o =¢¢, or ¢ = 1, should be treated separately.
It is not covered by the present analysis. In that case, two

solutions @ and @ need to be replaced by yexp(i«y) which leads to a
different expression for the Wronskian.
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5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary

The boundary-value problem in space for the evolution of
two—dimensional fluctuations in a boundary layer is formulated. With
velocity fluctuations specified along the y-axis, and impermeability
and no-slip imposed along the plate (which lies along the x-axis), we
seek the small-amplitude solutions in the quarter-plane downstream of
the y-axis. These velocity fluctuations are functions of "exponential
order” that can be Laplace transformed.

The differential equation

> ; i._ z z --f."? .a_!-.zo
{gf+"(5’)ax €V EV v ,y(y)ax

is Fourier transformed in time and Laplace transformed in the
x~direction. The resultant forced Orr-Sommerfeld equation is

{(F-2) (ot D=5y~ L (05 Loty - T

where the forcing function is 2 A o>
s _ 27\ a0 (r L 22O, &

The forcing function is Fourier transformed in the y-direction and
represent as

# = F‘W")E‘{Fy"’ "'—@e"”gy (5.2)

The particular integral of the forced equation is obtained by the
method of variation of parameters.

The four independent solutions of the homogenecus equation are
obtained as asymptotic solutions of the Orr-Sommerfeld equation with
an asymptotic expansion in<(/R wheree{is the x-wavenumber and R is the
Reynolds npumber. The smallness of this parameter under ordinary
conditions assures rapid convergence. These four  independent
sclutions have unique properties exploited in the present sclution.

The complementary and particular integrals are combined into a
general solution which satisfies impermeability and no-slip at the

wall and boundedness far-away.

The inverse Laplace transform is found via. the <Cauchy theorem
with a contour integration taken to the right of all poles, along a
semi-circle of infinite radius, and with indentations about the branch
lines.
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The left and right handed branches of one Riemann cut are
hyperbeolas. Integration about the left handed cut vyields the
contribution from the slewly-decaying vortical fluctuations in the
freegtream.

Since contributions from the right-handed leg are physically
unreasonable with a plate which extends to infinity downstream,
conditions are imposed on the forcing function to eliminate those
contributions,

Contributions from the isolated poles for the discrete modes are
obtained from the Cauchy theorem. The amplitude of the Tollmien wave
is found as the first in this series.

The amplitude of the decaying standing wave with another pole is
similarly found.

The exponentially-growing standing wave is excluded by
introducing a condition on the forcing function. This contribution is
excluded for the same reason as given above for excluding
contributions from the right-handed branch line.

The branch lines for the interior solution include the left and
right-banded hyperbola branch cuts. The fluctuation associated with
the right-handed branch line was calculated by Rogler (Ref, 47} as a
soluticn of the Orr-Sommerfeld eguation.

The poles in the interior solution include the N discrete modes,
the two modes corresponding to the exp(in} standing wave modes, and
poles along the hyperbola branch lines.

The poles in the asymptotic outer solution include the tails of

the N discrete modes, the oscillatory solutions corresponding to

/4»-"‘= -F’, and the oscillatory solutions corresponding to the standing
waves with s = +ief,

5.2 Procedure for Calculating the XInitial Amplitude of the Tollmien

(1} The procedure for calculating the four independent solutions of
the homogeneous Orr-Sommerfeld equation, &, &, #% , and &, is
outlined in Appendix A and Ref. 1. These s are solutions of the
Orr-Sommerfeld equation, as asymptotic solutions or as numerical
solutions with edge conditions defined by the solutions of Table 1.
The derivatives D and D& are evaluated at y=0, and the ¢s up to the
Z2nd derivative are stored for (<y<y.

(2) The der:ittlratives 3 (A& /dy) o and 3{A& /dy) /oware evaluated at y = 0
and for « =« “corresponding to the Tollmien wave and storegd.

(3) h,is evaluated from equation (3.23).

29



AEDC-TR-83-9

,
(4) @(0] is calculated from equation (3.17).

) . ,
{5] If”(o,y) is evaluated from eguation (4.4) for the amplitude of the
Tollmien wave at x=0.

5.3 Conclusions apd Recommendations

B houndary-value problem is formulated which illustrates how
initial fluctuations are represented as a superposition of its
(spatial} Fourier-Laplace solutions. Figure 4.1 serves as a roadmap
for the five families of fluctuations which can appear in a boundary
layer. The solution is complete in the sense that a superposition of
these fluctuations completely describes the floewfield for an
incompressible, viscous, small-amplitude, 2-D, unsteady Eflow in a
parallel-flow boundary layer over a flat plate.

Since this Fformulation in 1980, these five classes were
calculated as solutions of the Orr-Sommerfeld equation. Their
streamlines are plotted in Figures B.1-B.5 in Appendix B of this
report. A description of each fluctuaticn appears beside each figure.
These descriptions provide an overview of the five families that serve
ag basic building blocks for fluctuations in boundary layers. The
five are:

1. The discrete eigenmodes, where the Tollmien (or
Tollmien~Schlichting) wave is the fundamental mode of boundary
layer instability. These fluctuations vanish far from the
boundary layer.

2. The glowly-decaying yortical fluctuations, with solutions
described and calculated by Rogler and Reshotko (Ref. 48) and
Salwen and Grosch (Refs. 49,50). Far from the boundary layer,
these fluctuations are rotational.

3. The explosively-growing yortical i representing
upstream diffusion of vorticity (Refs. 27,47}). Far from the
boundary layer, these fluctuations are rotational.

4. The gxponentially-decaving stapnding waves described in
Refs, 5a,b,c. In the freestream, these waves are irrctational.
With the help of Mr. Arnie Rosner, a 16 mm animated movie was
produced which illustrates these waves, The movie shows that
these waves travel in the direction perpendicular to the wall.
Ref. 34 shows that a spectrum of these standing waves appear
downstream of the Jleading edge when freestream disturbances
interact with that leading edge. The waves can be generated by
surface waviness which is steady (Ref. 38B) or unsteady {(Ref. 39)
if a leading edge exists.

5. The expopeptially-growing standing waves alse described in
Refs. 5a,b,c. Although these waves are physically realizable in
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some problems, they are excluded in this problem with a flat
plate that extends to infinity downstream. Far from the boundary
layer, these growing standing waves are irrotational.

In future studies, the theory could be applied to identify what
properties of the initial disturbances are responsible for exciting
the Tollmien waves, and the role of the mean velocity profile (as
influenced by the mean pressure gradient and wall roughness}. Further
study is also required to account for the leading and trailing edges,
3-p disturbances, and the growth of the boundary layer.

The 3-D counterpart of this analysis was described in Ref. 41,
but additional analysis and calculations are required to complete that

study.
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Appendix A

METHCD OF SUCCESSIVE APPROXIMATION
FOR SOLVING THE CRR-SCMMERFELD EQUATION USING NEW SCALING

A.]l Infroduciory Comments

This appendix summarizes a methed used to solve the
Orr-Sommerfeld equation

{faM? (p -4 Q(U—C)(p ‘4)* } 7= {A.1)

where D = d/dy, R = USis the Reynolds number, « and ¥ are the
dimensionless wavegumbers 1n the streamwise and spanwise directions,
respectively, and A =%+ ¥*

Heisenberg (Ref. 52) observed that the Orr-Sommerfeld eguation
can be solved analytically in the inviscid limit

e T (A.2a)
2
with a small wavenumber A F << nf":s'f” (A.2b)

Tsuge {Ref. 1) recognized that the reduced (but still viscous)
Orr-Sommerfeld equation

2" _(F-c) 8 g
Z (=)o ;29 = O
{hm, 44 }' (2.3)
can be integrated once i%_o yield a third-crder equation
p — —
— (=<)L + & =

This equation is the =zeroth-order equation associated with the

following expansion
< ¢2)

) + e
70) =t 2 7 (£2) 77O .5)
L
with y =€p and €= (=R / (A.6a,b)
o)
The functions ¢ (N=0,1,2,...) obey the following set of equations
/ Ca)¢ o) - o (A.7)
, )
zm)c?ﬂ() = 2 F,ro) (A.8)
o ) (e=r) -z
;(®) pCn) ¢ » ,_f?ﬂ 72 ) (32) (A.9)

(o )
where the operators L and L{ are defined by

2= af'yaf?"“— r'(¢7— C)a’77z+ r'@y (&2,10)
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7) o —
£ = Z"z/*”/z”fﬁ"—f) (A.11)

Equation (A.4) is the zeroth-order equation in this set.

A.2 Four independent solutions of the zeroth-order equation

Equation (A.3 or A.8), or its integrated version {A.4)

Vi (mc )P DY i 1)

has four independent solutions, % ,/=1-4. Solutions # and & both tend
to slowly wvarying functions, whereas 4 and &, exhibit rapid decay or
growth. The solutions are found in the order 42; > >d +# in a form
where each solution requires at most knowledge of the ﬁfs from earlier
solutions. &, and are found exactly in terms of ¢ and A

The homogenecus solution of equation (A.4) is found first.
Because of its prospective exponential decay, the solution%is
assumed of form 7

& = exp&)\a?

o (A.13)

With this transformation of variables, the homogeneous form of
equation (A.12) is

4;:"'3}\.3\ + AS"('(J“C))\"-HZ’L =0

(A.14)
or alternately and mere conveniently
5 = = (- c_)

PAERSE SV A c_).«\—-As {A.15a,b)

Since we are seeking a solution of, _(A.l5a,b) which decays
exponentially in the asymptotic limit (A i ~ 0), the root for A with

negative real part is f'”/4 _ {/z
A~ —e ( o= C‘)

_ Yor p>>/
A (P-<) } / (A.16a,b)

In selving equation (A.15a,b} with asymptotic conditions (A.l6a,b), it
ig useful to introduce a variable transformation

Ve —a+ 26 (T-c)- A®
W= Hz/a+3g(g;- c)- Az (A.17a,b)
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and work with the equations in the new dependent variables (V,W)

Y eAV-26E =0

W 2AW-3 & =0 (A.18a,b)
subject to the asymptotic conditions

Viw~0o o> / — (A,19a,b)

The integration may be started at a point ;7 .—.(1}‘ {»>»1) with the initial
values

w=23, J%?,\ (A.20a,b)

and with A given by eguation (A.l6a} are moderately small. The
quadrature marches inward from this point, where the nonlinearity of
equation (A.l18) appears in the form
L4 ifz
A= —& =G+ Eo VA W

) (a,21)

A
and is taken into account for f < f.

This method of numerical integration of the original equation
{A.15) works successfully only for the decaying solution #. A
formally identical procedure for the growing solution & suffers from
numerical instabilities. The two soluticns are different because the
point 4 =@ is a saddle singularity of equation {A.15) for the case
treateéd, but it is a nodal singularity from which infinitely many
solutions emerge for 43; .

A straightforward calculation from (A.14, A.21, and A.20) leads
to the solution
5/4

"é(/) = % (/4)(%— - ) exp {—- f.-t‘”/‘Fz E(J"c) ’/i,/ S

=< -
(forf >{7 > 1) (A.22)

Y

The classical counterpart of ¢ given in Ref. 52 is

- % ) 3/2
s .
%)= SMTS”FTV&%’B [%(m"f) ] (A.23)

(o
where Hyz is the Hankel function of the first kind and 7 and &, are
defined by
/3 /5
]

= (y-g )(~R)

Nhes

a, = (4 (A.24)
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with subscript ¢ signifying the value at the c¢ritical layer. For
7>>»1, (A,23)} takes the form

-5/ 7S x 3/z
% (7))~ 7 /ex,o {—e 2(a7) } (A.25)

If we employ the linear approximation {A.24) For U-c at the critical
peint, soletion (A.22) reduces to (A.25).

Solution &

After one of the sclutions of the third order equation (A.13) is
found, the difficulties in solving for the remaining solutions are
considerably reduced because of the following theorem: If n
independent solutions of the mth order linear differential equation
are at hand, then the (n+l)}th solution is obtained by solving an
equation of (m-n)th order. To use this thecrem for the second
solution & requiree that an equation of the order 3 - 1 = 2 be derived
by putting ‘7

%= % \57 (R.27)

[ =]
and by substituting into equation (A.13), This, in turn, is
equivalent to claiming that if G is assumed in the form

f
G = exp &(-—)w 5) 07 (3.28)

¢

then the transformed variable S obeys a first order ronlinear
equation. A simple calculation actwally confirms the assertion,

yielding a Riccati equation
é-o- 52+AS-—W=O {h.29)

where A and W have been solved from egns. (A.8) and  (A.11),
respectively. Of the two asymptotic roots of (A.29} for S~0, the one
that vanishes asf +®, namely

S= w/A (A.30)

is the correct choice, since only this root insures that &
need for having a slow variation as f +a. In fact, then

7 7
%= %\ por|\eralgf - 4o
o />/>>}

meets the

(A.31)

o

with A -32 1(,'-,,, A
-

="

a
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Because the integrand in (A.31) is a rapidly growing function, only
the portion near the upper bound contributes to the integral. Then
the integral is replaced with

(- a+ S)-!exp ?i(-/\* s) ’/}

It is interesting to compare #@ of (A.31) with its <classical

counterpart /s
(@%ﬁ G 707 O(<R) /

(2, e = (F-c)r0(a%) (A.32)

which represent the inner {visccus) and outer (inviscid) sclutions by
Heisenberg (Ref. 52}. The «clagssical & is uniformly slowly varying,
whereas the ¢Z given here is moderately varying ford7- 0(1), and is a
rapidly varying function of the physical coordinate y =¢7. This
solution tends only asymptotically for f’ >>1 to a slowly varying
function.

Also we note that solution (A.31) coincides with the leading term
of the classical outer seolution, which further substantiates the
asymptotic method applied here. :

Solution &

Repeated use of the theorem assures that the third solution
% satisfies a first order linear differential equation to be deduced
from (A.13). This assertion is realized by the method of variation of
constants

g =S

where & and #are functions of # to be determined. Having eliminated
¢, between the original equation (A.13) and the supplementary condition

i% GG =0

which is standard to this method, we are lead to the equation For /3

A A EE-AE
5% BEE-#44
This equation is integrated twice, and its substitution into (A.33)
gives
A ~Z A -2
Z=-g\GW g \gn sy 834
& a
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=
e 1% 4%
z & (A.35)

It is easily confirmed from solution (A.34) for & that it has an
asymptotic form of exponential growth with « In fact, using the
same approximation as has been used previously in deriving (A.31), we
have for (A.34)

/
% 2N E 4 ?
A ~ 5/ 7t Yz
~&(F-c) " exple® gf'f/"f) ‘7 (A.36)
. L17/% 2
with < 7

ST ETCANL

In deriving the second row, the asymptotic expressions {A.24) and
(A.31) for ¢ and & have been used. Relationship (A.36) is again in
qualitative agreement with its classical equivalent, as is the casge
fo; ;l]'.:e decaying solution ¢Z . The classical equivalent is, from
Ref, ’

{ﬂ (?')} = ?& /7 'g g ;,T;;) S]'z_(f.%?)sj'/e}

3
c/ -

(A.37)

with the same n)omenclature as before with the Hankel function of the
second kind H'®’ | The asymptotic expression of (A.25) for 7>> 1 is

i3
- 5/4. ??'(/‘F S/Z
~ ex,o{ e _g_(q;r) }

af(r)}
*
{ P’ (A.38)
in agreement with (A.36) with limited accuracy in the welocity
profile.

The set of solutions (#,#,%) which has been constructed has a
noteworthy characteristic for the Wronskian that simplifies the
analyses which follow

i

”, -
z (A.39)

SR NR
B wﬂ' W‘Q'
N Q. ‘Q

This formula is easily checked by noting the following relatiorship

4 7 z
A N AN S A R
9;?, /ffc:wz/ ?Jowz/ w
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WhiCh holds for /= U’ lp 2,

Solution #

Since all homogeneous solutions are exhausted, the fourth
solution @ of equation (A.12) is the particular sclution of the
equation with € =1

¢j -(-(J—C)ﬁ-‘. (Uq = (- (A.40]

The method of variation of constants is used here also, since all of
the homogeneous solutions & through & are available. The theorem

states that no differential equation needs to be  solved. A
manipulation using the key property (A.39) leads to the solution
7 A 7
B = AB\WE - G\WE 0y g \W .4
7 ° =
7 -z
with Z = \ew o (/=2,3) , (A.42)
“ o
where ? >> 1 is a point beyond which the asymptotic expressions for

g through «cg,are valid., Taking the derivatives successively, we have

‘S;Wfso’/-('a/

a’@ Z
* +c =
f : SW‘{/ t’Ssj ('/-/J » 5) {A.43)

This result can be checked by using (A.38), (A.32), and (A,33).

The function & in expression (A.41) behaves as a slowly varying
function for 7 >> 1 under the same conditions as invoked in deriving
the asymptotic expression (A.31) for & . The resulting expressicn is

B 7 -2

@g~-(- f)&(f/" <) (7>7>>1) (A.44)
7
For comparison, the classical equivalent to this function is
-1/3
(@ oy = 7+ O(45)
: _ -z z

(43)05 ot (0"() S(U") oﬁ( - o(4 ) {(A.45)

where 7is defined in (R.24). The leading terms of the asymptotic

43



AEDC-TR-83-%

expression agree with the leading terms of the classical outer
solution.

Because of (A.43), we can show the following relationship for the
Wronskian formed by the four solutions ¢/ through e

7 4 HG P
e |9 % % e
7 & 4 %
¢ & # % (A.46)

The full solution of the Orr-Sommerfeld equation is constructed
from the series (A.6) by syccessive approximation starting with
equation {A.l3) with solution# known. In practice, the nth-order
correction ¢™’ is obtained by sclving the inhomogeneous equations
(A.10) fellowing the same procedure as has lead from equation (A.40)
to solution (A.41). The result is

2™ ?\ i T (W R S
P AW A \Wa S e g\ )
2

&

TS

o0
() SR K '
with %% 7% -1 /- G (#-2) (A.48)
A A SR A
2 :; pIp 3>/
Using these formula, the same approximation as used in deriving
the asymptotic expressions for ;f and ;ﬂz . we get

2 7
») - " - (7-2) -
‘f{ﬂ*(ﬂ-f)&(—&%z &(U")g” 77 (for 73755 1) (A.49)
7

This expression, when substituted into A.5, with f,'m)= #(/:1,2) given
by [(A.44) and (A.31) respectively, coincides with Heisenberg's
inviscid outer solutions (Ref. 52). The series, solutions for F, and
F,are uniformly convergent if the lower bound y=rr{ is taken such that
U-c varies only slowly for ¥y < y. In fact, then, the series sum up to

yield /e
- ay(or®)
€ =--(/-—-(') ff/?aéf‘q(y-j}——;—- (A.SO)
A= (O-¢) rosh A(j—/é‘)- 8, (A,51)

In closing, this solution of the Orr-Sommerfeld equation for the
Tollmien wave has been calculated and verified by Tsuge and Sakai
(Ref. 2).
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Appendix B
A summary of basic characteristics of five forms of 2-D spatial
oscillations in a parallel-flow, Blasius boundary layer, viscous, flat
plate, with 0{y<m

1, The Tollmien—Schlichting instability wave

ijs the fundamental wave in a finite set of
eigenmodes. The T-8 wave is the only known
unstable eigenwave for an incompressible, flat
plate boundary layer. The higher modes are
all heavily damped for the Blasius layer. The
main physical features include two viscous
layers (a viscous sublayer near the wall, and
a critical layer near where U(y_)=Real(the
phase speed)). The T-S wave propagates

downstream and may grow or decay depending on
the boundary layer, Reynolds number, and Lﬁ

frequency. Across the sublayer, the Reynolds
stress jumps from zero to some value. Across \ﬁ‘ﬁ—*A:f,

the critical layer, that stress jumps back to

ZEro. This Reynolds stress, if viscous

dampening is not too large, can lead to growth Figure B.l
of the wave.

2. The decaving standing wave decays
exponentially in the streamwise direction and
oscillates sinusoidally in time as

v=f(y)exp(-px—iwt) . This oscillation does not
propagate in the streamwise direction; the
phase speed is pure imaginary. Above the
boundary layer, the standing wave behaves as
v=[Ae;p{—my)+Bs1npy+cospy]exp(-px—imt).
Far-away from the boundary layer, this
fluctuation is irrotatiomal. The limit of a
standing wave as P-»0 is a Stokes wave
uly,t)=f(y)exp(-iwt), v=0, for an oscillating
freestream. The “collision” of vortical and
other freestream disturbances with the leading
edge cen excite a spectrum of these decaying =———
waves. Interactions between the trailing edge

and disturbances are also believed to excite

these waves. Steady waves of this form are

also induced by flow over a wavy wall with a

leading edge.

v

Figure B.2
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3. The pgrowing standing wave is the
exponentially growing counterpart to (2). If

inviscid, oscillations (2) and (3) are related _
by ¥s=@%*. Although the viscous terms do not
transform this way, calculetions show that (Ei
this relationship is a good guide for large
Reynolds numbers., The steady limit of this‘“““*=H_h‘___q___‘—___h____-__
wave behaves fundamentally different than (2).
The phase speed is pure imaginary. This
oscillation is believed to be excited by
leading and trailing edges. Like (5), this (:Eig;
oscillation represents an upstream influence
of downstream b.c. in numerical calculations.

Wall waviness can also excite these
fluctuations.

Figure B.3

4. Decaying yorticasl fluctustions propagate
downstream with a speed slightly greater than
the freestream, and decay slowly as
v=¢(y)exp (iof(x—c_t))exp tyx) where
« =(“ +&°) /R+... A passive viscous sublayer
forms at the wall. The smallness of the
veloecity fluctuations in the boundary layer is
caused by the formation of a layer of M
vorticity at the “edge” of the boundary layer
which induces a flow in the direction opposite
to that induced by the vortical freestream
disturbances. Outside of the boundary layer,
the flow behaves as
V=[Aezp("my)+Bsinpy+cospylexp[iqtt-ct)]. Far
above the boundary layer, the fluctuations are
rotational, in contrast to waves (2) and (3). Figure B.4

5. The upstream traveling vortical wave grows
explosively like exp(+Ryx). It propagates

upstream at a speed approximately equal to -U,.

and represents upstream diffusion of

vorticity. Difficult to calculate due to the ===
very high frequency oscillation exp(iR y) in
the boundary layer. This oscillation, 1like
waves (2)-(4), also exists for a uniform mean
flow, U=1, in contrast to the stability waves
for which a boundary layer must be present.
Above the boundary 1layer, this oscillation
behaves as
v=[Aexp (-my) +Boospy+singylexp[ie(x—ct)]. This
wave is one of the upstream influences of a
downstream boundary condition in a
calculational domain, It is one of the
upstream influences of leading and trailing
edges, and is perhaps an additional viscous
diffusion effect in non-parallel flows. Figure B,5
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NOMENCLATURE

convergence parameters in generalized Fourier
transforms, equation (2.6)
defined in equation (A.24)

constants in equation (3.19a)

complex phase speed

complex constants in equation (3.8)

ordinary derivative

complex amplitude of the longitudinal velocity

forcing function

Fourier coefficients of the forcing function

defined in equation (4.20)

defined in equation {A.28)

?ogfﬁgnts in the partial fractions of equation (3.21})

contribution from the jth pole as defined in
equakion (4.2}

operators defined in egns. (A.11,A.12)

disturbance pressure

Reynolds number based on characteristic thickness
of the boundary layer

Laplace parameter

real value of & lying to the right of all poles

values of s defined in equation {4.11)

transformed variable in eguation (A,28)

time

disturbance velocities in the x, vy and z directiens

mean velocity in the streanwise direction

mean x-velocity in the freestream

mean velocities in the y and z directions;
see equation (A.l7) for use of V, W as
transformed variables in Appendix A

Wronskian

coordinate parallel to plate in the streamwise direction

coordinate normal tc the plate

y-value of the boundary layer edge

y-value for the asymptotic matching

gpanwise cocrdinate

Ef&gk and Script

x=wavenumber

x-wavenumbers of the discrete modes

y-wavenumber

z-wavenumber; contour of integration

Laplacian operator

characteristic thickness of the boundary layer;
delta function

cofactor

defined in equation {3.18}

inverse of Reynolds number
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z

y (o +iR(sl-cd 17* ; see equation (A.15a,b)
for definition in Appendix A

z kinematic viscosity

7 disturbance vorticity in the z-direction

& (Y)=&+i¢ complex amplitude of the normal velocity disturbance

& ¢i=1,2,3,4 four independent solutions of the Orr-Sommerfeld equation

§’(0) defined in equation (3.17)

r integration contour

A -& (A {@, imaginary part of s lying to the right
of all poles; variable defined in equation (A,13)

o’ frequency

& vector defined in equation (4.13)

‘s defined in equation (4.18)

")

time average

boundary layer edge

particular integral

real and imaginary parts of a complex variable
partial derivative with respect to x

Fourier transform

evaluated at x=0

classical solution

48



